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Theory of thin airfoils in fluids of high 
electrical conductivity 

By W. R. SEARSAND E. L. RESLER 
College of Engineering, Cornell University, Ithaca, N.Y. 

(Received 21 July 1958) 

Steady, plane ffow of incompressible fluid past thin cylindrical obstacles is 
treated with two different orientations of the undisturbed, uniform magnetic 
field; namely, parallel and perpendicular, respectively, to the undisturbed, 
uniform stream. In  the first case, the flow of an infinitely conducting fluid is 
shown to be irrotational and current-free except for surface currents at the walls 
of the obstacles. With large but finite conductivity the surface currents are 
replaced by thin boundary layers of large current density. 

In  the second case, for infinite conductivity the flow field is made up of an 
irrotational current-free part and a system of waves involving currents and 
vorticity extending out from the body. For large, finite conductivity these waves 
attenuate exponentially with distance from the body. 

In both cases the forces on sinusoidal walls and on airfoils are calculated. In  
the second case positive drag occurs. 

Introduction 
In this paper we study the steady flow past thin cylindrical bodies of an incom- 

pressible fluid of high electrical conductivity, In  particular, the approximation of 
infinite conductivity will be adopted for the most part. Although this approxima- 
tion is not believed to be appropriate for most problems in the field called 
‘magneto-aerodynamics’ (see, Resler & Sears 1958), it should be appropriate in 
other situations which involve greater ‘ magnetic Reynolds numbers ’. Such 
situations may include flows involving high gas temperatures, or flows of liquid 
metals. Our results will also be of some interest in illustrating phenomena that 
occur when the fields induced by the motion are large, as contrasted with the 
typical aeronautical cases where these induced fields are often negligible. 

We are concerned solely with the domain where the fluid may be considered a 
continuum and where the flow of electricity may be described by Ohm’s Law. 
Other simplifications are made in writing the pertinent equations of motion in the 
next section. 

The basic equations 

described by the following equations: 
Steady flow of an inviscid fluid of constant density p and conductivity (T is 

continuity, 
17 

divq = 0; (1)  
Fluid Mech. 5 



258 

momentum, 

W .  R. Xears and E.  L. Resler 

1 1 .  

P P 
q.vq+-vp = - J  x H; 

Ohm’s Law, j = c ( E + q x H ) ;  

and Maxwell’s equations, 4nj = curl H ; 

curlE= 0; 

divH = 0; 

where q denotes the fluid velocity, p the pressure, j the current density, H the 
magnetic field vector, and E the electric field vector. We are employing electro- 
magnetic units, so that the permeability of empty space is 1, and we assume that 
the fluid has the same permeability. In  equation (3) we neglect the current com- 
ponent that arises from the flow of charged fluid particles, because this term can be 
shown to be small, compared to the terms retained, in the type of flow considered 
here. In  equation (4) we neglect ‘displacement currents’ for the same reason. 

By substitution for j from equation (4) into equation ( 2 ) ,  the momentum 
equation becomes 

1 1 
q .Vq+-Vp  = -(H.VH-iVH’). 

P 477P 
( 7 )  

Similarly, both j and E can be eliminated from Ohm’s Law by means of equa- 
tions (4) and (5). The result, after some straight-forward vector calculus and use 
of equations (l), (5) and (6), is 

( 8 )  -cur l (qxH) = q.VH-H.Vq =---V2H. 
1 

4nc 

The problem is now reduced to the simultaneous solution for given boundary 
conditions of equations ( 7 )  and (8) for q, H and p, subject to the conditions 
divq = 0 = divH. 

Small-perturbation flow: Case I 
Consider now the case of plane, steady flow in which the stream velocity and 

the magnetic field are uniform and parallel except for small disturbances; i.e. 
we suppose 

(9) 

and H = (H,  + h,, h,, 0 ) ,  where h,, h, < H, (10) 

q = (U + u, v, 0) ,  where u, v < U, 

We assume now that the ratios of perturbations to free-stream values are of the 
same order for both the velocity field and the magnetic field, and this will be 
shown later to be correct, at least for fluids of high conductivity. 

To first order, then, the equation of momentum, equation (7), becomes 

where v denotes the vector (u ,v)  and h the vector (hZ,?+,). The x-component 
equation in equation (1 1) can be integrated immediately, yielding 

PUU+P =pa, (12) 

where pm denotes the undisturbed static pressure. 
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The y-component equation, upon substitution of - p U(  aulay) for splay, becomes 

a=----, HO 
47Tp u 

where R and [ are respectively the curls of the vectors q and H ;  i.e. 

where j ,  is the z-component of current density. 
Similarly, equation (8) becomes 

Infinite conductivity 

For fluids of very large electrical conductivity, neglect the right-hand side of 
equation (16). This equation is then integrable and becomes 

= function of y 
h v  
H,-u 

= 0, 

where it is assumed that the function of y is evaluated at large y where the stream 
and magnetic field are undisturbed. 

This relation states that the velocity and magnetic fields are distorted in 
exactly the same way; the streamlines and magnetic lines of force are always 
parallel. This is, of course, a result of the infinite-conductivity approximation. 
It is not, in fact, restricted to the small-perturbation case, as will now be shown. 
For -+ co, equation (8) becomes 

curl (q x H) = 0. 

q x H = constant 

(18) 

But in plane flow, since q x H has only a z-component, equation (18) requires that 

(19) 

Thus if this vector product vanishes anywhere, as it does in the undisturbed part 
of the flow in the present problem, it must vanish everywhere, and the stream- 
lines and magnetic lines must be parallel to one another. 

Returning now to the small-perturbation case, we see, in view of equation (17)) 
that the vorticity Cl is proportional to the current density, so that equation (13) 
becomes 

Thus, except for the particular case where the stream speed U is equal to 
the ‘AlfvBn velocity’ H0/,/(4np), we conclude that the flow is irrotational and that 
&he current-density j ,  is zero to first order. In  the special case the disturbance 

17-2 
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produced by the body is propagated in the form of an Alfvbn wave, relative to 
the undisturbed stream, at just the speed of the body. Hence, the body moves 
in a ‘cavity’ of its own shape, and exerts no force on the fluid. 

At all other stream speeds the flow field about the body is just the same as in 
a non-conducting fluid, and is determined by the boundary conditions and the 
required cyclic constants (circulations). We therefore carry over to this field all 
the familiar solutions of plane, small-perturbation, irrotational, incompressible 
flow, such as are provided by thin-airfoil theory. 

There are, however, important modifications to the force on the body surface, 
since there are, in general, surface currents at such an interface. These are sheets 
of infinite current density, which allow the solution formed above (equation (17)) 
to exist and the required boundary conditions at the body surface to be satisfied. 
We shall illustrate this effect by means of three examples. 

(1) Infinite sinusoidal wall (insulator) 
Let the contour of an insulating wall be defined by y = ecoshx where E < A-l. 
For brevity we can adopt the familiar complex notation, real parts being implied 
everywhere, and write y = eei”. The first-order solution for the flow problem is 

(21) 
well known : v = i U , C ~  eiA@+i?A = iu. 
Thus, the perturbation of the magnetic field is given by 

(22) 
The surface current, in the z-direction, is given by equation (4) in the form 

(23) 
where Cr, denotes the current per unit length, flowing in the 2-direction, and the 
values assumed at the interface between fluid and wall have been replaced 
approximately by the values at y = & 0 in the usual way. We have determined 
hx(z, + 0 )  in equation (22). 

Within the insulator there can be no currents, so again the magnetic field must 
be curl-free. The boundary condition at  the interface is provided by the require- 
ment of continuous h,; hence h,(x, - 0) is given by equation (22). The disturbance 
must vanish as y-+ -m. The solution, for y < 0, is 

(24) h, = i H  ~AeiXz-iu) = -ih,. 
The surface current, according to equation (23)) is therefore given by 

(25) 
According to equation ( la ) ,  the pressure distribution throughout the fluid is 

the same as in the analogous flow of a non-conductor. The force exerted on the 
wall, however,.is given by the difference between the local static pressure and the 
force, HoJ, per unit area, arising from the surface current. Let this net pressure 
be denoted by p,(x); then, to first order, 

h = iH ,=heiA(x+il/) = ih,. 1/ 0 

4rJS = -h,(x, +O)+h, (x ,  - O ) ,  

0 

4774 = - 2 H 0 d  eihx. 

p , (4  = p ( z ,  + 0) - HOJ, (26) 
= p,-pUu(x, +O)+(Hg/2r)eheiAs 
= p , - p U 2 ~ A e i A x + ( H ~ / 2 n ) ~ h e i A x  

= pm-pU2eheihz(l -2m-2), (27) 
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where m denotes the ratio of the stream speed U to the Alfvkn velocity, 

Thus, the amplitude of the net pressure disturbance on the wall is reduced by 
the magneto-hydrodynamic effect as compared to the usual result. This pressure 
disturbance vanishes at a flow speed 4 2  times as great as the Alfvkn velocity, and 
is opposite in sign for greater field strengths Ho. 

In  these results, the singular case mentioned above for a stream flowing at the 
Alfvkn velocity does not appear, of course, since it involves rotational flow and 
electric-current flow in the fluid in the z-direction. Presumably, it could only be 
set up by means of carefully controlled initial conditions. 

( 2 )  Lifting airfoil without thickness 

The classical irrotational small-perturbation flow past a body of this category 
may be represented by a vortex sheet which produces a discontinuous velocity 
component u and continuous v. According to equation (17), the discontinuity of u 
is proportional to the discontinuity of h, at the same location on the airfoil; the 
latter determines the surface current as in equation (23). Thus the net force 
distribution (lift loading) on the airfoil is given by 

l,(z) = -pU{u(z ,  - 0)  -u(x, + O)} + (H0/477) (h,(z, - 0) -h,(z, + 0)) ( 2 8 )  

(29) 

c1 = cIo (1 - m-2} and c, = cm0 { 1 - m-2>, (30) 

= 2u(z ,  + 0 )  (pU- HgI(47rU)) = 2pUu(x, + 0) (1 -m-2>. 

The coefficients of lift and moment become, therefore, 

where clo and cm0 are the analogous coefficients for the same airfoil in a non- 
conducting fluid. 

It is interesting to notice that, in the approximation of infinite conductivity, it is 
immaterial whether the airfoil itself is a conductor or insulator. In  either case 
the current is the same, being determined solely by the discontinuity of h,. 

The total current flowing in the z-direction is proportional to the total circu- 
lation I?: 

(3) Xymmetrical airfoil with thickness (insulator) 

The flow about a body of this category is represented by a source-sink distribu- 
tion, which produces discontinuous v and continuous u. The distortion of the 
magnetic field is such that the lines of force follow the streamlines around the 
body. Such a field can be constructed by imagining that magnetic sources and 
sinks are distributed along the axis. There is no net current at the body and the 
total force on the cylinder is zero. 

However, to determine the pressure distribution on the surface one must give 
up the magnetic-source-sink approximation and consider the magnetic field 
within the body; again the resulting discontinuity of h, involves a surface current. 
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But the magnetic field within the body is extremely simple, for the streamline 
pattern has been constructed to satisfy the condition of vanishing velocity com- 
ponent normal to the surface. Thus the magnetic field satisfies the same condition : 
vanishing normal component. But, if the body is an insulator, the magnetic 
field is harmonically distributed inside, and the field strength is zero. The ‘con- 
vection ’ of magnetic lines by the flow therefore involves very large forces at the 
body surface, for the surface current is of zero-th, rather than first, order; namely, 
the surface current is, on the upper surface of the body 

1 

It will be seen that equation (32) predicts a zero-order surface current even for 
vanishing U.  This is, of course, a consequence of the approximations of our theory, 
since we have essentially required the streamlines to be distorted around the 
body even at vanishing stream speed. It does seem qualitatively correct that, 
even at very small stream speeds in a fluid of great conductivity, the magnetic 
field must be parted by the body and that large forces must result. The force 
cannot be calculated by our approximate, first-order formula (26), in view of the 
large perturbation of the magnetic field; it  is of order H;. 

Since the conclusion q x H = 0 is not limited to small-perturbation flow 
(equation (19)), it seems clear that the vanishing of the interior field is not a 
consequence of the small-perturbation approximation but only of the assumptions 
of infinite conductivity and plane, steady flow. 

Finite conductivity 

If r~ is large but finite, the right-hand side of equation (8) is small, and this 
equation may be attacked by a ‘ boundary-layer ’ approximation. We shall post- 
pone a general treatment to a subsequent paper and consider here only the 
corresponding small-perturbation case, i.e. equation (16), which also takes on 
a boundary-layer character for large (T, but has the virtue of being linear. 

We first operate on equation (16) with the curl and then substitute for !2 by 
means of equation (13). The result is 

(33) 

where K 3 477(~U( 1 - m-2). (34) 

36 
ax 

v 2 t - K -  = 0, 

The usual boundary-layer arguments show that, as K -+ a, the appropriate 
approximation to equation (33) within a boundary layer of thickness O(K-*) is 

More precisely, the approximation applies for large ‘ magnetic Reynolds numbers ’ 
R, = ULa,  where L is the characteristic body dimension, and applies in a layer 
of thickness O(LR;*), provided that m2 is not close to 1. The analogy with the 
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familiar viscous boundary layer is quite complete, except, of course, that lineari- 
zation is usually not appropriate for such layers. At the outside edge of the 
magnetic boundary layer, equation (33) goes over into aLJax = 0, which represents 
our irrotational, current-free flow field. 

The magnetic boundary layer therefore serves to eliminate surface-current 
sheets, replacing them by boundary layers of large current density, just as a 
viscous boundary layer can be thought of as replacing a vortex sheet. 

In  the magnetic boundary layer the approximate expression for is - ahJay; 
thus equation (35) can be integrated once to yield 

where F ( z )  is recognized as the value of - K ah,.ax at the edge of the layer, i.e. 
in the potential flow. 

-U 

FIGURE 1. Distribution of the magnetic-field perturbation component h, in the magnetic 
boundary layer of flow past a sinusoidal insulating wall. The undisturbed magnetic field is 
parallel to the undisturbed stream. 

Let us apply these equations to the case of the infinite wavy wall. The boundary 
conditions for this problem are consistent with the small-perturbation assump- 
tion; namely, 

(i) at the wall, from equation (24), h, = - Hosheih5, 
(ii) at the outer edge of the magnetic boundary layer, from equation (22), 

h, = H o d  eShx. 

The appropriate solution of equation (36) is 

h,(x, y) = H O d e d h ~ ( l  - 2 exp [y; ( - i - 1) y]} . (37) 

This solution is presented graphically in figure 1 for a case m < 1. 
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Small-perturbation flow : Case II 
Consider now the case of plane, steady flow in which the stiream velocity and the 

magnetic field are uniform and perpendicular except for small disturbances; 
i.e. let 

(38) 

and H = (h,, H, + hy, 0) ,  where h,, hy < H,. (39) 

q = ( U  + u, v, 0), where u, v < U ,  

It will again be assumed that the ratios of perturbation to free-stream values 

To first order, the equation of momentum, equation (7), then becomes 
are of the same order for both velocity and magnetic fields. 

Taking the divergence of both sides of this equation, we obtain 

i.e. the quantity p + (H0/4n-) hg (which might be called the total pressure pertur- 
bation including magnetic pressure) is a harmonic function in the x, y-plane. 

The form assumed by Ohm’s Law, equation (S), in this case is 

We can obtain interesting forms of equations (40) and (42) by employing the curl 
operator. Equation (40) becomes 

aa H, a t  
ax 4npay’ 

at an 1 
ax o a y  4.rrg * 

u-=-- 
while equation (42) becomes 

U--H-=-V2( 

By cross-differentiation these can be put into the forms 

and 

(43) 

(44) 

(45) 

(46) 

In$nite conductivity 

Before discussing this case in detail, it may be well to point out that the con- 
figuration of the undisturbed flow, having flow velocity and magnetic field at 
right angles, is a possible one even for fluids of infinite conductivity. To be sure, 
equation (8) with right-hand side equal to zero is often interpreted as stating that 
‘magnetic lines of force are convected with the fluid’. However, this is only a 
convenient interpretation of the fact that the number of lines enclosed by any 
closed contour is constant if the contour is convected with the fluid (see Cowling 
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(1957), p. 5 ,  equations (1-13), and Hayes (1949)). In  the present case the magnetic 
field must extend to x = +a; i.e. the magnet must be infinite in length. 
A possible realization of this configuration might involve a channel which closes 
on itself within a uniform magnetic field, provided that the radius of the channel 
were so large as to make the approximation of plane flow tenable. 

For (T -+ 00, the right-hand sides of equations (45) and (46) are negligible and 
both 52 and 5 satisfy the wave equation. Their general solutions may then be 
written immediately; they must both be of the form f (x -my) + g(x +my). Let us 

where the condition div v = 0 has also been satisfied, provided that 

v24, = 0 = v24,. 
But upon substituting equations (47) into the momentum equations, equation (40), 
we are able to integrate with respect to x and y, respectively, obtaining 

Uu + P/P = - (H0/471p) {F2@ - my) + G2(x +my)) + C, 

U u  +p/p  = - (U/m) { - F,(x - my) + Gl(x + my)} + C, 

P2(x-my) = -4(471~)J'~(x-m~) ,  

G2(z +my) = 4 ( 4 7 4  GI(% + my). 

(49) 

(50 )  and 

where C is a constant. This requires that 

(51) I 
The rotational parts of the velocity and magnetic fields are therefore related in 

a simple manner. Moreover, the irrotational parts are also related. First, we 
have equation (42) with right-hand side equal to zero. Substitution of equa- 
tions (48) and (51) into this equation leads to 

from which 

( 5 2 )  

(53) 

except for a constant, which must be put equal to zero in view of the undisturbed- 
flow conditions. 

Second, we can make use of equation (19), which applies to this case. For this 
perturbation case under consideration, it becomes, to first order, 

H,u+ Uh, = 0. (54) 
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Upon substitution for u and h, from equations (48)) and in view of equations (51), 
it follows that 

In  summary, equations (48) involve four unknown functions; Fl(x - my), 
Gl(x + my), q51(x, y), and q52(x, y) (since Fz and G, are linearly related by (51)); and 
the last two of these are related by equations (53) and (55). We now illustrate the 
application of this theory by working out three examples. 

(1) In$nite sinusoidal wall (insulator) 

We again consider the flow over the wall whose contour is given by y = eedhx. 
The boundary condition at the wall is, to first order 

o(x, 0) = UY’(x )  = iUheeihx. ( 5 6 )  

As a second boundary condition we require that no perturbations are propagated 
toward the wall from the undisturbed stream; i.e. for this flow 

G1(x +my) = G2(x + my) = 0. (57) 

Since all remaining perturbation quantities will be sinusoidal ,we introduce the 
notation 

Fl(x - my) = Fo eih(z-my), (58) 

where Fo and fl are constants, and the last equality follows from equations (53) 
and (55). 

No currents flow in the insulator, so that the description of the magnetic field 
for y < 0 is provided by another potential function, say q5s(x, y), where, for y < 0, 

where f 3  is a constant. 

the wall-fluid interface. Thus 
As before, to satisfy equation (6) we require continuity of the component h, at 

while equation (56) states that 

In  the present problem, moreover, we shall also require the component JL, to be 
continuous at the solid-fluid interface, because a first-order surface current would 
produce first-order force components in the tangential direction and there is no 
mechanism here to resist such force components. Thus, 
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The simultaneous solution of equations (61), (62)  and (63)  leads immediately 

(64) 
1 +m2 

2i + m + im2’ 

to the results 
Fo = - 2 U k -  

and 
m2 - im 

2i + m + im2’ 
fl = Us 

from which the wall pressure is found, using equation (50), to be 

m2 - 2im - 2 
m(m - 2i) p ( x ,  0) = p ,  -pU% -&Ax 

The function of m that appears in equation (66) is plotted in figure 2 in the form 
of a vector diagram giving the amplitude and phase of the pressure perturbation. 

o , 2 1 1 1  0 0.2 0 4  0.6 0.8 1 .O 

FIGURE 2. Vector diagram showing real and imaginary parts of the functions of m for 
(a )  the pressure on a sinusoidal insulating wall as given by equation (SS), and (b )  the 
pressure (or lift) on a sinusoidd airfoil as given by equation (79). The undisturbed magnetic 
field is perpendicular to the undisturbed stream. 

( 2 )  Lifting airfoil without thickness (insulator) 

Suppose the boundary condition is 

Z I ( X ,  0) = U Y ’ ( x )  for - b  < x Q b, 

so that y = Y ( x )  gives the airfoil shape. This requires both 

and 

F#)+ (2) = UY‘, 

G,(z)+ (!$) = UY’.  

1 

1 +m2 y=+o 

1 +m2 y=-0 

1 
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Once again we require both hz and h, to be continuous at the airfoil, for the 
reasons set forth above. The first of these two conditions, in view of equations (48) 
and (51), means that 

or, with equations (68), 

If this equation is compared with equation (53), with due regard for signs, it 
becomes clear that aq5Jay and aq52/ax must be continuous at the airfoil. Thus 
may involve a vortex sheet and q52 a sheet of magnetic sources, at  most. In  view of 
this conclusion, we have from the boundary conditions (68) that 

FlW = G,(x)- (71) 

At this point it is easy to verify from equation (48) that u(x,  + 0)  = - u(x ,  - 0); 
but equation (54) states that u(x, y) is proportional to h,(x, y), which has been 
made continuous at the airfoil. The conclusion is therefore that 

U ( X ,  & 0) = 0 = h,(x, 0). (72) 

We have succeeded in relating explicitly the rotational and irrotational parts 
of the flow; i.e. 

or 

(73) 

(74) 

The boundary condition (68) can now be expressed in terms of the unknown 
potential function $l(x, y) alone: 

in the interval - b < x < b. 
Boundary-value problems of this type were treated by Rott & Cheng (1954), 

and a procedure for constructing their solutions was given. Applied to the present 
problem, it leads to the result 

where z = x + i y  and /3 = (+)- (l /n) tan-l (l/m), the tan-l being in the first 
quadrant. However, this solution does not seem particularly illuminating in the 
present studies, and we give instead the solutions for two cases where simpler 
results are obtained. 
(a) Suppose, for example, that the airfoil is sinusoidal in shape ( Y = e eiAz) and 

of infinite chord (b  = co). All terms in equation (75) are then sinusoidal, and it is 
easily ascertained that 

for (77) 
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whence Uhe eihx 
1 +m2 

F1(X) = -- 
m+i 

and, from equation (50), the lift loading Z(x) is 

The function of m that appears in equation (79) is plotted in figure 2 .  

series of thin-airfoil theory (Glanert (1926), p. 88); namely, 
(b) A family of solutions of equation (75) is given by the so-called Glauert 

1-cos8 + C B,sinnO, 
sin8 n=l 

(??)g=o = - B, - 
B, cos no, 

n = l  

and their linear combination according to equation (75), 

(82) 
1-coso 

-mUY’(x) = B, [ +m + C Bn{sinn8+mcosnH}, 
sin 8 I n=l  

where xlb = cos8. 
The profiles of airfoils of this family are found by integration of equation (82). 

Their lift loading is, from equations (50) and (74), 

2 
m 

Z(X) = --pUF,(z) 

1-coso 
sin0 

The terms in equation (80) have been selected to satisfy the Kutta-Joukowski 
condition of finite velocity at  the trailing edge, as can easily be checked using 
equations (48), (71) and (74). 

In  figure 3 are shown the airfoils of this family obtained by using the terms in 
B, only, for several values of m. These airfoils all produce elliptical lift loading of 
magnitude proportional to (1 + m2)/m2; i.e. their lift coefficients are 

1 +m2Bl 
cz = 277-- 

m2 U ’  

It seems clear that this lift, for m < co, is associated with positive drag. 

(3) Xynzmetrical airfoil with thickness (insulator) 

Within the airfoil we have 

div h = 0 = curl h. (85) 

Again, the boundary values for the inner field are given by the values of h, and h, 
assumed at  the airfoil surface; there can be no surface currents for the reasons 
explained above. Thus the boundary values of h, and h, are of first order, and so 
are ah,/az and ah,/ax. It follows immediately from equations (85) that ah,/ay and 
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ah,lay are of first order. By integration with respect to y, we have then that the 
values of both components at  the top surface of the airfoil differ from the values 
at  the lower surface by higher-order quantities. 

We therefore take both h, and h, to be continuous across the singularity sheet 
that represents the airfoil in the limit, i.e. 

h,(% + O )  = h,(X, -Oh 
h,(x, + O )  = h,(z, -0). (86) 

I n  view of equation (54 ) ,  u must also be continuous across the airfoil. 

Loading 

m =  

- 

I I 

Airfoil shapes t 
I Ho 

I 
F~UURE 3. Lift Ioading and corresponding geometries of three airfoils producing elliptic 
loading for different values of m. The undisturbed magnetic field is perpendicular to 
the undisturbed stream. 

With the aid of equations (48)  and (51), it  follows that 

and, using also equation (53), 

The boundary conditions at the airfoil are 

v(z, + O )  = +_ VY’(z) for -b  < x < b, (89) 
so that, from equations (48 ) ,  

(90) 
1 

1 + m 2  
= 2UY’(z)  - - {E;(z) - G,(z)} . 
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By comparison of equations (88) and (go), we have 

TI(%) -GI(%) = 2UY' (x) .  (91) 

Now, the continuity of u, in view of equations (48), means that 

while the boundary conditions (89) state that 

Suppose that the potential function 4 ,  involves both a vortex sheet and a source- 
sink sheet at  the airfoil. Then the right-hand side of equation (92) is the vortex- 
strength distribution, while the right-hand side of equation (93) is twice the 
corresponding vertical-velocity component, since the source strength does not 
contribute to either. These quantities are seen to be proportional to one another. 
But it can be shown (e.g. Rott & Cheng 1954) that the only vortex distributions 
that satisfy this homogeneous condition are singular at  both z = 5 b, and this 
would necessarily lead to infinite loadings there in the present problem. Thus, 
by means of the Kutta-Joukowski condition at the trailing edge, we conclude 
that 4, arises from a source-sink sheet alone. 

Fl;(X) = - G , ( 4 ,  (94) Then 

and equation (87) states that the magnetic-field singularity at the airfoil is a 
current sheet only. Combination of equations (88) and (91) yields the following 
simple formula for the distribution of the fluid sources and the strength of the 
fictitious current sheet : 

The corresponding values of a#,,@x at the sheet are given by 

where the symbol P means that the Cauchy principal value is to be taken. 
The surface pressure can now be calculated from equations (49) or (50): 

The pressure on the lower surface, p ( x ,  - 0), differs from p,by an equal amount, 
and there is no lift. 

Examples of pressure distributions calculated from equation (97) are easy to 
construct. We exhibit here in figure 4 the case of a thin elliptic cylinder. The 
pressure distribution is plotted for various values of m. The distortion of the 
distribution from its familiar symmetrical form as m is reduced from infinity 
obviously implies non-vanishing drag. Its value is 

0 Ph 
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Finite conductivity 

For large but finite conductivity, we return to equations (45) and (46) and 
assume that the right-hand terms are small. The solution can then be carried out 
by introducing damping into the sinusoidal-wave solutions found in the pre- 
ceding section, in the same way that viscous damping is introduced in problems 
of acoustics. This is the same process as Alfv6n (1950) used to calculate the 
damping of propagating magneto-hydrodynamic waves. 

f 
I 
I 

> 
I 

FIGURE 4. Pressure distribution on a thin elliptic cylinder at  zero incidence for several 
values of rn. The undisturbed magnetic field is perpendicular to the undisturbed stream. 

Thus, for the infinite sinusoidal wall we write, in analogy with equations (47) 

6 = K eiXx-mu) e-W, (99) and (58), 

where K and ,i,~ are constants. Substituting this into equation (45), we have, after 
neglecting terms of order p2 in comparison with terms of order p, 

(100) 
(1 + m2) mh2 (1 + m2) mh2 

P = FUa-m"h w ~- 8nUu 
* 

To help interpret this result, let y,, denote the value of y at which the waves are 
damped to l / e  times their amplitude at  the wall; i.e. 

This means that the time to damp to lje, since the waves propagate in the y 
direction with the Alfvhn speed, is 
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where 1, denotes the wave length of the wall, 2n/A. The right-hand side of 
equation (102) is seen to be proportional to a diffusion time, namely, the time 
required for the magnetic field to diffuse over a distance equal to the minimum 
spacing between the waves, lw/z/(m2 + 1). In  this interpretation our result agrees 
with Alfven’s in the investigation mentioned above [Alfven (1950), p. 821. 

The conclusion reached here is that one effect of small, non-vanishing resistance 
is damping of the vorticity and current in the waves that emanate from the solid 
surface. The pressure, including the values of pressure at the solid surface, is also 
affected; its calculation will be presented in another paper. 

By Fourier superposition the solution for sinusoidal waves can be generalized 
to give the solution for other types of waves, such as are produced by cylinders of 
various geometries. In  every case we find attenuation and diffusion of the waves. 
These solutions will also be published shortly. 
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